KASM/KINT REV 3.4

Copyright 2002-2007 Everett Kaser

All rights reserved

KINT 3.4 changes

Changed: SysPlaySound opcode so that if the memblk in R95 is 3, 4, or 5, then the R15 address is a memory address in memblk 0, 1, or 2 (R95-3) of a .WAV file that has been read into memory, and R96=non-zero to NOT stop the playing of an already-playing sound. Ie, call with R96==0 and the new sound will override any currently playing sound, call with R96!=0 and the new sound will NOT be played if another sound is currently being played.

Changed: SysFileSize now also returns in R14 the number of seconds since midnight Jan 1, 1970 of the last time the file was modified.

KINT 3.2 changes

Changed: SysStretchBM opcode so that if the width AND the height of the source bitmap is negative, then a smooth MASKED stretch of the bitmap occurs (assuming that the source bitmap IS a masked bitmap).

KINT 3.1 changes

Added: PUF, POF, ADF, SUF, MUF, DIF, CMF, NEF, I2F, F2I opcodes (0xFE78-0xFE8F) to implement floating point stack and replace the Fxxx floating point opcodes that were added on rev 3.0 (which didn’t work). Knarly Jigs and Knarly Works 2.0 were the only games to use the old 3.0 floating point instructions, and the old instructions will be removed once Knarly Jigs and Knarly Works 2.0 get recompiled and rereleased. The new opcodes use the same block of 8 DWORDS in the “header” area of the MAIN.KE file (offsets 20 through 51) as the floating point stack.

Changed: many of the Kprint routines in MAIN.C to fix various problems with printing.

Added: SysSleep opcode. Be VERY careful porting this function, as unwanted side-effects (especially in multi-threaded operating systems) could appear.

KINT 3.0 changes

Fixed: RectGradientBMB() in PMACH.C so it works correctly when the rectangle is partially clipped.

Fixed: SysPrintBM wasn’t working right (only printed bitmap if source X/Y was 0,0).

Changed: SysGetFont (if R38==0 then R39==font handle to get info for)

Fixed: SysText wasn’t properly clipping text in some cases.

Fixed: Windows WM_SYSKEYDOWN handling for ALT-alphakey was not sending OnAlphaKeyDown message before OnChar message.

Fixed: LSA opcode didn’t convert from WORD offset to negative DWORD offset correctly (added casting).

Changed: “JSI =dval” opcode from 0xFCxx to 0xFB01. (I hadn’t used that opcode anywhere yet, and it was taking up an entire major opcode value when it didn’t use the lower byte at all. Moving it frees up a major opcode for future use.

Added: LDM, ADD, SUB, CMP, TST, AND, OR, XOR memory operations (opcodes 56/57)

Added: LEA & PEA ops to load effective address of 56/57 memory ops into a DWORD register or push it on R7.

Added: PUSH, POP memory operations (opcodes FE25-FE42) which push and pop memory contents to and from the R7 “C stack” (R7 decrements before PUSHs, increments after POPs).

Added: PUSC, POPC register operations (opcodes FE61-FE66) which push and pop register contents to and from the R7 “C stack”.

Added: INC, DEC, NEG, NOT memory operations (opcodes 0xFE43-0xFE60 and 0xFEAA-0xFEC8).

Added: JSRC =, JSRC r=, JSIC =, JSIC r=, and RETC opcodes who’s return addresses go to (and come from) the R7 “C stack”.

Added: PUB, PUW, PUD opcodes to push immediate values onto the R7 “C stack” (opcodes FE22-FE24)

Added: FNEG, FADD, FSUB, FMUL, FDIV, FF2I, FI2F, and FCMP floating point operations. NOTE: these are FLOAT, not DOUBLE! They always operate on DWORD register size.

Added: LJxx conditional long jumps to DWORD address (opcodes 0xFB08-0xFB0F).

The R7 “stack” has been implemented to give a stack that “pushes” in the negative direction, which is what most C compilers expect. It’s expected that the C startup routine will set R7 to the END of the R5 stack, so that the two grow towards each other.

KINT 2.4 changes

Fixed: SysPrintBM didn’t work always (DC problem, changed KPrintBMB in MAIN.C).

Fixed: SysLine wasn’t clipping properly in some circumstances (changed LineBMB in PMACH.C)

Fixed: SysStretchBM wasn’t drawing correctly in some circumstances (changed CompressBMB in PMACH.C)

KINT 2.3 changes

SysInvDrawBM and SysInvDrawMBM were added to draw INVERTED (“negative”) bitmaps.

SysStretchBM was changed to add smooth (blending) stretch/compression of bitmaps when R35 is negative.

KINT 2.2 changes

SysRGB2HSL and SysHSL2RGB have been changed so that HSL values are in R84-R86 instead of R83-R85 (to make them DWORD register aligned). Additionally, R83 is cleared (set to 0) by SysHSL2RGB and R87 is cleared by SysRGB2HSL.

SysRect was modified. If R13 or R14 is –2, then it does a “lightness/saturation gradient fill”, where R90 is the hue, R91 is the minimum saturation value, R92 is the maximum saturation value, R93 is the minimum lightness value, and R94 is the maximum lightness value.

Support was added for the mouse wheel (see Microsoft message WM_MOUSEWHEEL, KINT message WM_KEYDOWN, KINT keycode K_WHEEL).

A new “file location” (normally in R94 for most file access Sys calls that use it, like SysOpen, SysLoadBM, etc), DIR_GAME_IMG (value of 6) was added. This is for loading a GRAPHICS file (.BMP in MS Windows) from the main game folder (rather than from IMAGES or BACKGNDS).

SysPrintRect was added for printing a rectangle (imagine that…)

SysPrintFont R38 value was changed from passing the required pixel height to passing the point size (8, 10, 12, etc).

SysSetWindowPos was changed to allow R10 to control the forcing of minimize, maximize, and restore.

KINT 2.0 changes

A number of changes have been made in revision 2.0 of the KINT/KASM system. It started with a port of Sherlock to the Pocket PC handheld computer. I wanted it to run full-screen in “landscape” mode, and for the display to be “reversible” so that users could hold the device either way. To accomplish this, I ended up rewriting all of the graphics output code so that I was doing all of the graphics myself (in C code) to memory byte-arrays, and the only graphics call to the OS was to BLIT the memory byte-array/bitmap to the actual screen memory when requested by the OS. To accomplish this, I had to do my own font loading/drawing, which meant that the printer font selection would now be different from the screen font selection (and I didn’t feel like going the extra mile and doing all of the printer output stuff myself, although I should have, and may at some future point, but life is short…). I realized that the massive graphics code changes I’d made would also ease the porting of the interpreter to other environments (such as Linux), because now large parts of what was system-dependent had become system-independent. One thing led to another, and I decided to go ahead and make some changes that had been accumulating in the back of my head for a year and a half. These consist of:

Added SysPrintFont for selecting the current font for printed text.

Changed SysPrintText to no longer pay attention to R37, which use to have the font handle.

Added a FONTS file that contains screen bitmap fonts in various sizes (including bold & italic) which are loaded and used by the SysText and SysGetTextSize opcodes. These include both variable and fixed pitch, although the fixed pitch fonts available are more limited than the variable pitch fonts.

Added SysStretchMBM for drawing stretched MASKED bitmaps.

Added SysOrientBM opcode for specifying the rotation/flipping orientation of a bitmap (including the screen).

Changed SysSizeBM to also return the current bitmap orientation in R37.

Changed SysLoadMBM to add a second transparency pixel color location in R37/R36, allowing a game bitmap to draw “framing” lines that make the bitmap creator’s job easier, but which still don’t show up in the game.

Added SysOval opcode for drawing outlined, filled, and edged ovals/circles.

Added SysRect opcode for drawing outlined, filled, and edged rectangles (also done with SysRectOutline, SysRectSolid, and SysRectEdged, but this one is consistent with SysOval, and specifies the rectangle by its top-left corner and its width/height, and is a single opcode for doing all three types of rectangles.

Added SysAlphaBlend to allow “blending” of source and destination graphics. All graphics primitives obey the current SysAlphaBlend setting.

Added SysLoadKE, SysMsgKE, and SysUnloadKE opcodes to allow one .KE program to load and call another.

Changed the supported file-open flags, reducing the supported set to just O_RDBIN, O_WRBIN, and O_WRBINNEW. Those are the only three that any of my once-and-future .KE programs have or will use, and this simplifies the KINT porting process for anyone attempting to port to another platform.

Changed SysText so that it now invalidates the screen. On KINT 1.x, it was assumed that some SysRect call had been done prior to any text output, which was usually true…but not always.

Added SysMakeFolder and SysDelFolder.

Changed SysOpen to allow a subfolder path specification, but ONLY in DIR_GAME.

Added clipping to the graphics output, along with the SysClip and SysGetClip opcodes. These opcodes are consistent with the new SysOval and SysRect opcodes in specifying the clip region by x/y and w/h.

Added SysColorize to allow manipulation of hue, saturation, lightness, grayscale of bitmap areas.

Added character-width buffer argument to SysGetFont to retrieve a table of character widths.

Added SysMaskBM for creating (or re-creating) a bitmap mask “on the fly.”

Added SysSaveBM to write a bitmap back out to a .BMP file.

Added SysHSL2RGB and SysRGB2HSL to convert Hue-Satruation-Lightness to/from RGB.

Added SysStrcat.

Added SysLineStyle at rev 2.2

I tried to make most of these changes in ways that wouldn’t completely break the running of a 1.x KASM program on the 2.0 KINT interpreter (although obviously printing of text will take a hit).

Besides the obvious changes required by the above, KASM has also been modified to allow registers to have a ‘b’, ‘w’, or ‘d’ suffix, to override the default register size. This allows one to now specify non-default register sizes while still using the default register numbers. For example, on KASM 1.x, to load R32 and R33 with R10, you would have had to have done “ldr d128,r10”. Now, you can do “ldr r32d, r10”. Conversely, you can do “ldr r10b, r32” to load JUST the first byte of R32 into the first byte of R10, leaving the other three bytes of R10 untouched.

KASM has two optional command line arguments:

 -q
(quiet) disables the “copyright/revision” output at startup

-l (lowercase L, list) disables the creation/output of a .KL list file

BITMAP functions:

The KINT program creates a "display bitmap" automatically. A bitmap handle of NULL (0) refers to this "display bitmap". The NULL handle bitmap can’t be deleted, but it can be written to by all of the drawing functions. The KINT program is also responsible for any "cleanup" work that needs to be done regarding the "display bitmap" when exiting. ALL other bitmaps MUST be deleted by the .KE program using SYS_DELBM (although the current interpreter implementation also tries to make sure these are cleaned up, just in case).

There are masked and non-masked bitmap operations. If a bitmap is loaded by SysLoadMBM, then the coordinates of two pixels are specified, and the colors of those two pixels are considered “transparent”, they’re never drawn when the bitmap is drawn (using SysDrawMBM). However, if you load masked bitmap with SysLoadMBM and then pass the handle to SysDrawBM (the non-masking bitmap drawer), those transparent colors WILL be drawn. Only SysDrawMBM and SysStretchMBM obey those transparency colors.

K CPU structure:

For all two-register opcodes, the first (left-most) register is operand-1 and the destination register for the result of the operation, while the second (right-most) register is operand-2 or the address/index register. Exceptions to this rule are the “range” opcodes, such as CLR, PUR, POR, where the first register number specifies the beginning of the address range, while the second register number specifies the end of the address range (inclusive).

Register numbers can be specified with a leading ‘r’, ‘b’, ‘w’, or ‘d’ (the size indicators), or with a suffix of ‘b’, ‘w’, or ‘d’ to override the default register size. There are 256 bytes of CPU registers. When the register is specified with a leading ‘b’, ‘w’, or ‘d’, then the register number specified should be between 0 and 255 for ‘b’, 0 and 254 for ‘w’, or 0 and 252 for ‘d’. When the register number is specified with an ‘r’, then the number is a “pre-sized register” number. The 256 bytes of CPU registers are pre-configured into DWORD, WORD, and BYTE registers to ease the programming task. The registers are pre-sized thusly:

CPU reg# range

Pre-sized reg# range
Pre-sized register size

 0 – 127

 r0 – r31

 DWORD (4 bytes)

 128 – 223

 r32 – r79

 WORD (2 bytes)

 224 – 255

 r80 – r111

 BYTE (1 bytes)

NOTE: All WORD or DWORD register accesses should be on a WORD boundary (ie, no WORD accesses should be done on odd register boundaries). Some CPUs don’t like odd accesses, and the macros in PMACH.H don’t check for this to keep the execution code as efficient as possible.

All register numbers in this document will be prefaced by a size indicator (‘r’, ‘b’, ‘w’, or ‘d’). However, the pre-sized register numbers are ONLY used by the assembler (KASM). ALL ‘machine code’ uses ONLY CPU register numbers from 0 to 255, as the size of the operation is implied by the opcode. In other words, the assembler translates all pre-sized register references into actual CPU register numbers and the appropriate opcode for the size of the operation. The FIRST register (left-most, data register) after an opcode determines the size of the operation. For example, “LDR r6,r80” will load FOUR byte-registers (R80, R81, R82, R83) into the DWORD register R6. This operation could alternately by specified in a number of different ways with the first register being specified as either “r6” or “d24” and the second register being specified as ‘r80’, ‘b224’, ‘w224’, or ‘d224’ (“LDR d24,r80” or “LDR r6,b224” etc). The ‘b’, ‘w’, or ‘d’ specification on the second register has no bearing on the size of the operation or how many registers are actually accessed there, as that is controlled by the size of the first register.

Registers r0-r5 are hard-coded to their purpose by the interpreter. The other registers are general purpose and may be used however you wish. The hard-coded registers have these uses:

R0
code memory handle, 32 bits

R1
memory block handle 1, 32 bits

R2
memory block handle 2, 32 bits

R3
code pointer, offset in memory block [R0], 32 bits

R4
stack frame base, offset in memory block [R0], 32 bits

R5
top of stack pointer, offset in memory block [R0], 32 bits

The KCPU has three status flags: MSbit, E, LSbit. They’re set by these opcodes:

SHL SHR ROL ROR SUB AND XOR CMP INC DEC NOT NEG TST B2I

as well as the “RET 0” and “RET 1” opcodes (but NOT the “RET” opcode). All other opcodes have NO effect upon the KCPU flags (except REF).

The KCPU has 1 “control” flag, the “signed math” flag or SM. SM is cleared by the USM instruction (unsigned math) and set by the SM instruction. The state of the SM flag is saved and restored by the SAF and REF instructions. When SM is set, the KCPU does signed math operations when executing these opcodes:

SHR DIV MOD SUB CMP

The KCPU always uses signed math when executing the NEG instruction. Some of the above operations (SUB CMP) may have the same result whether the SM is set or not, but are included for completeness.

When KE “event entry points” are called (such as OnKeyDown, etc), R32 contains the command (which is just the offset into the vector table), R15, R14, and R13 contain arg1, arg2, and arg3 respectively. When the event code HALTs, it should first place into R39 the value that it wishes to be returned for the event.

When using a register as an index (ie, LD0 r16,r12,=Table), the index (address) register is always treated as an unsigned value. The index register is almost always treated as a DWORD value, regardless of the pre-sized register number specified. For example, LD0 r16,r80,=Table will actually use r80-r83 as a DWORD offset that gets added to the value of Table to arrive at the actual target address.

Anywhere that an EQU’d value can be used as an “immediate” value, you can also use sizeof(arg) where arg is the name of a structure definition or the name of a structure variable. If the structure variable is an array of structures, then the sizeof() returns the size of the entire array (in bytes). If it’s a single structure or a structure definition, then it returns the size (in bytes) of the single structure.

The IJMP opcode uses the specified REGISTER value as the index into a table whose address is specified by the DWORD following the IJMP opcode. The format of that table is thus:

DWORD
n = number_of_indexed_entries

DWORD
entry_0

DWORD entry_1

DWORD entry_2

...

DWORD entry_n-1

DWORD
default_entry

The DWORD entries in the table are addresses (in memblk[R0]) of the routines to jump to. If the value in the specified register is >= n, then the jump goes to the default_entry (ie, entry “n”).

The KJMP opcode is very similar to the IJMP opcode, except that it contains two DWORDs per entry, the first being the KEY value, the second being the jump address. The table has this form:

DWORD n = number_of_keyed_entries

DWORD key_entry_0

DWORD jmp_entry_0

DWORD key_entry_1

DWORD jmp_entry_1

...

DWORD key_entry_n-1

DWORD jmp_entry_n-1

DWORD jmp_default

The table of opcodes on the following page is organized in numerical sequence. All opcodes are a WORD. The number given in the following table is the value of the upper (most-significant) byte of the word (the KASM/KINT system is “little-endian”). The lower half of the opcode usually contains the first register number. For two-register opcodes, the second register number is contained in a second word immediately following the first opcode word. If an address or immediate value is needed, then it follows after that as either a WORD or a DWORD, depending upon the size of the operation and/or the addressing mode. A minor exception to all of this are the FExx opcodes, which use the lower byte to differeniate the actual operations (since they don’t use registers, and opcode space became short). Another exception to this are the conditional jump instructions, which use the lower byte as the + or – offset by which to jump. In this table, the registers are specified by ‘r’, ‘b’, ‘w’, or ‘d’ to indicate the sizes of the register operands.

The FE10 through FE21 opcodes are “indirect register pointer” opcodes. This means that you can load any BYTE register (ie, any CPU register 6-255) with a value from 0-255, and then use that register as the second register operand of these opcodes (LDC, LDCP, LDCM, STC, STCP, and STCM) to access other CPU registers. For example:

ldi
r111,=REG_32

; point r111 at r32 (see UI.KH for REG_ equates)

ldi r110,=0

@:

stcp r110,r111

; store r110 (0) into the reg pointed to by r111 (r32)

; and increment r111 afterwards

cmp r111,=REG_40

jne
@b

; loop til r111=REG_40

This code will (in a VERY inefficient fashion () clear registers r32-r39. The size of the operation, as usual, is determined by the size of the first register. In these cases, since the entire opcode is taken up specifying the operation, the second WORD (the WORD following the opcode) contains both register numbers. The first register number is in the upper half of the following WORD and the second register number is in the lower half.

Note that ONLY one byte of register space is used (and incremented or decremented, if specified) regardless of the “size” of the register. For example:

ldi r6,=0xFFFFFF80

ldi r111,=0

stcp r111,r6

This will cause a 0 to be stored into CPU register 0x80 (R32), and then increment the least significant byte of R6, leaving R6 with a value of 0xFFFFFF81. You could similarly do:

ldi r6,=0xFFFF80FF

ldi r111,=0

stcp r111,b25

This will cause a 0 to be stored ito CPU register 0x80 (R32), and then increment the 2nd least significant byte of R6, leaving R6 with a value of 0xFFFF81FF. If the “index” register rolls over from 0xFF to 0x00 (using STCP or LDCP) or from 0x00 to 0xFF (using STCM or LDCM), there is still no effect on the surrounding registers, ONLY that one byte register is modified.

REG-REG

00 unused

01 unused

02 unused

03 SHL
b,b

04 SHL
w,b

05 SHL
d,b

06 SHR
b,b

07 SHR
w,b

08 SHR
d,b

09 ROL
b,b

0A ROL
w,b

0B ROL
d,b

0C ROR
b,b

0D ROR
w,b

0E ROR
d,b

0F ADD
b,b

10 ADD
w,w

11 ADD
d,d

12 SUB
b,b

13 SUB
w,w

14 SUB
d,d

15 MUL
b,b

16 MUL
w,w

17 MUL
d,d

18 DIV
b,b

19 DIV
w,w

1A DIV
d,d

1B MOD
b,b

1C MOD
w,w

1D MOD
d,d

1E OR

b,b

1F OR

w,w

20 OR

d,d

21 AND
b,b

22 AND
w,w

23 AND
d,d

24 XOR
b,b

25 XOR
w,w

26 XOR
d,d

27 CMP
b,b

28 CMP
w,w

29 CMP
d,d

2A TST
b,b

2B TST
w,w

2C TST
d,d

2D XCH
b,b

2E XCH
w,w

2F XCH
d,d

30 LDR
b,b

31 LDR
w,w

32 LDR
d,d

33 LDE
d,b

34 LDE
d,w

35 LDE
w,b

36 ABIT
w,b

37 ABIT
b,b

REG-REGDIR

38 LD0
b,d

39 LD0
w,d

3A LD0
d,d

3B LD1
b,d

3C LD1
w,d

3D LD1
d,d

3E LD2
b,d

3F LD2
w,d

40 LD2
d,d

41 LDS
b,d

42 LDS
w,d

43 LDS
d,d

44 ST0
b,d

45 ST0
w,d

46 ST0
d,d

47 ST1
b,d

48 ST1
w,d

49 ST1
d,d

4A ST2
b,d

4B ST2
w,d

4C ST2
d,d

4D STS
b,d

4E STS
w,d

4F STS
d,d

50 PU0
b,d

51 PU0
w,d

52 PU0
d,d

53 PO0
b,d

54 PO0
w,d

55 PO0
d,d

56 memory ops

57 memory ops

REG-REGDIR-addr

58 LD0
b,d,=dval

59 LD0
w,d,=dval

5A LD0
d,d,=dval

5B LD1
b,d,=dval

5C LD1
w,d,=dval

5D LD1
d,d,=dval

5E LD2
b,d,=dval

5F LD2
w,d,=dval

60 LD2
d,d,=dval

61 LDS
b,d,=dval

62 LDS
w,d,=dval

63 LDS
d,d,=dval

64 ST0
b,d,=dval

65 ST0
w,d,=dval

66 ST0
d,d,=dval

67 ST1
b,d,=dval

68 ST1
w,d,=dval

69 ST1
d,d,=dval

6A ST2
b,d,=dval

6B ST2
w,d,=dval

6C ST2
d,d,=dval

6D STS
b,d,=dval

6E STS
w,d,=dval

6F STS
d,d,=dval

70 PU0
b,d,=dval

71 PU0
w,d,=dval

72 PU0
d,d,=dval

73 PO0
b,d,=dval

74 PO0
w,d,=dval

75 PO0
d,d,=dval

76 LSA
d,=dval

77 B2I
r,r

REG-REG RANGE

(always inclusive)
78 CLR
b,b

79 PUR
b,b

7A POR
b,b

7B unused

7C unused

REG
7D SAF
b

7E REF
b

7F RET
b,=0

80 RET
w,=0

81 RET
d,=0

82 RET
b,=1

83 RET
w,=1

84 RET
d,=1

85 INC
b

86 INC
w

87 INC
d

88 DEC
b

89 DEC
w

8A DEC
d

8B NOT
b

8C NOT
w

8D NOT
d

8E NEG
b

8F NEG
w

90 NEG
d

91 PUSH
b

92 PUSH
w

93 PUSH
d

94 POP
b

95 POP
w

96 POP
d

97 CBW
w

REG-IMMDIR
98 LD0
b,=dval

99 LD0
w,=dval

9A LD0
d,=dval

9B LD1
b,=dval

9C LD1
w,=dval

9D LD1
d,=dval

9E LD2
b,=dval

9F LD2
w,=dval

A0 LD2
d,=dval

A1 LDS
b,=dval

A2 LDS
w,=dval

A3 LDS
d,=dval

A4 ST0
b,=dval

A5 ST0
w,=dval

A6 ST0
d,=dval

A7 ST1
b,=dval

A8 ST1
w,=dval

A9 ST1
d,=dval

AA ST2
b,=dval

AB ST2
w,=dval

AC ST2
d,=dval

AD STS
b,=dval

AE STS
w,=dval

AF STS
d,=dval

B0 IJMP
b,=dval

B1 IJMP
w,=dval

B2 IJMP
d,=dval

B3 KJMP
b,=dval

B4 KJMP
w,=dval

B5 KJMP
d,=dval

B6 JSR
d,=dval

B7 JSI
d,=dval

B8 CBD
d

B9 CWD
d

REG-IMM
BA LDI
b,=wval

BB LDI
w,=wval

BC LDI
d,=dval

BD SHL
b,=wval

BE SHL
w,=wval

BF SHL
d,=wval

C0 SHR
b,=wval

C1 SHR
w,=wval

C2 SHR
d,=wval

C3 ROL
b,=wval

C4 ROL
w,=wval

C5 ROL
d,=wval

C6 ROR
b,=wval

C7 ROR
w,=wval

C8 ROR
d,=wval

C9 ADD
b,=wval

CA ADD
w,=wval

CB ADD
d,=dval

CC SUB
b,=wval

CD SUB
w,=wval

CE SUB
d,=dval

CF MUL
b,=wval

D0 MUL
w,=wval

D1 MUL
d,=dval

D2 DIV
b,=wval

D3 DIV
w,=wval

D4 DIV
d,=dval

D5 MOD
b,=wval

D6 MOD
w,=wval

D7 MOD
d,=dval

D8 OR

b,=wval

D9 OR

w,=wval

DA OR

d,=dval

DB AND
b,=wval

DC AND
w,=wval

DD AND
d,=dval

DE XOR
b,=wval

DF XOR
w,=wval

E0 XOR
d,=dval

E1 CMP
b,=wval

E2 CMP
w,=wval

E3 CMP
d,=dval

E4 TST
b,=wval

E5 TST
w,=wval

E6 TST
d,=dval

E7 JMP
=dval

CONDITIONALS

E8 JE

+offset

E9 JE

-offset

EA JNE
+offset

EB JNE
-offset

EC JL

+offset

ED JL

-offset

EE JLE
+offset

EF JLE
-offset

F0 JG

+offset

F1 JG

-offset

F2 JGE
+offset

F3 JGE
-offset

F4 JEV
+offset

F5 JEV
-offset

F6 JOD
+offset

F7 JOD
-offset

F8 JMP
+offset

F9 JMP
-offset

SPECIALS

FA SysFunc

FB00 JSR =dval

FB01 JSI =dval

FB08 LJE =dval

FB09 LJNE =dval

FB0A LJL =dval

FB0B LJLE =dval

FB0C LJG =dval

FB0D LJGE =dval

FB0E LJEV =dval

FB0F LJOD =dval

FC JSI
=dval

FD00 RET

FE00 BRK

FE01 NOP

FE02 TERM

FE03 HALT

FE04 AFR

FE05 DRF

FE06 USM

FE07 SM

FE10 LDCM b,b

FE11 LDCM w,b

FE12 LDCM d,b

FE13 LDC b,b

FE14 LDC w,b

FE15 LDC d,b

FE16 LDCP b,b

FE17 LDCP w,b

FE18 LDCP d,b

FE19 STCM b,b

FE1A STCM w,b

FE1B STCM d,b

FE1C STC b,b

FE1D STC w,b

FE1E STC d,b

FE1F STCP b,b

FE20 STCP w,b

FE21 STCP d,b

FE22 PUB bval (r7)

FE23 PUW wval (r7)

FE24 PUD dval (r7)

FE25 PUSH [r]b (r7)

FE26 PUSH [r+x]b (r7)

FE27 PUSH [x]b (r7)

FE28 PUSH [r+x+y]b (r7)

FE29 PUSH [r+r]b (r7)

FE2A PUSH [r]w (r7)

FE2B PUSH [r+x]w (r7)

FE2C PUSH [x]w (r7)

FE2D PUSH [r+x+y]w (r7)

FE2E PUSH [r+r]w (r7)

FE2F PUSH [r]d (r7)

FE30 PUSH [r+x]d (r7)

FE31 PUSH [x]d (r7)

FE32 PUSH [r+x+y]d (r7)

FE33 PUSH [r+r]d (r7)

FE34 POP [r]b (r7)

FE35 POP [r+x]b (r7)

FE36 POP [x]b (r7)

FE37 POP [r+x+y]b (r7)

FE38 POP [r+r]b (r7)

FE39 POP [r]w (r7)

FE3A POP [r+x]w (r7)

FE3B POP [x]w (r7)

FE3C POP [r+x+y]w (r7)

FE3D POP [r+r]w (r7)

FE3E POP [r]d (r7)

FE3F POP [r+x]d (r7)

FE40 POP [x]d (r7)

FE41 POP [r+x+y]d (r7)

FE42 POP [r+r]d (r7)

FE43 INC [r]b

FE44 INC [r+x]b

FE45 INC [x]b

FE46 INC [r+x+y]b

FE47 INC [r+r]b

FE48 INC [r]w

FE49 INC [r+x]w

FE4A INC [x]w

FE4B INC [r+x+y]w

FE4C INC [r+r]w

FE4D INC [r]d

FE4E INC [r+x]d

FE4F INC [x]d

FE50 INC [r+x+y]d

FE51 INC [r+r]d

FE52 DEC [r]b

FE53 DEC [r+x]b

FE54 DEC [x]b

FE55 DEC [r+x+y]b

FE56 DEC [r+r]b

FE57 DEC [r]w

FE58 DEC [r+x]w

FE59 DEC [x]w

FE5A DEC [r+x+y]w

FE5B DEC [r+r]w

FE5C DEC [r]d

FE5D DEC [r+x]d

FE5E DEC [x]d

FE5F DEC [r+x+y]d

FE60 DEC [r+r]d

FE61 PUSC b (r7)

FE62 PUSC w (r7)

FE63 PUSC d (r7)

FE64 POPC b (r7)

FE65 POPC w (r7)

FE66 POPC d (r7)

FE67 JSRC =dval (r7)

FE68 JSIC =dval (r7)

FE69 JSRC d,=dval (r7)

FE6A JSIC d,=dval (r7)

FE6B RETC (r7)

FE70 fneg d

FE70 fadd d,d

FE70 fsub d,d

FE70 fmul d,d

FE70 fdiv d,d

FE70 ff2i d

FE70 fi2f d

FE70 fcmp d,d

FF unused

The 56/57 opcodes are extended “memory operations”. When a register is used as part of a memory address in these opcodes, it is ALWAYS a DWORD, regardless of what register is specified. The instruction word is encoded in this way:

5 6/7

0101 011s siii aaaa

ss = operand size (0=byte, 1=word, 2=dword, 3=undefined)

iii = instruction:

000 LDM
load memory (move or copy) the second operand into the first

001 ADD
add the second operand to the first

010 SUB
sub the second operand from the first

011 CMP
sub the second operand from the first, but don’t store the result, just set the flags

100 TST
and the second operand into the first, but don’t store the result, just set the flags

101 AND
and the second operand into the first

110 OR
or the second operand into the first

111 XOR
xor the second operand into the first

aaaa = addressing mode

FORMAT:

0000
regl,[regh]

[op_word] [reg_word]

0001
regl,[regh+off]

[op_word] [reg_word]
[off_DWORD]

0010
regl,[mem]

[op_word] [reg_word]
[addr_DWORD]

0011
regl,[regh+mem+off]
[op_word] [reg_word]
[addr_DWORD] [off_DWORD]

0100
regl,[regh+reg2]

[op_word] [reg_word]
[reg_word2]

0101
[regl],regh

[op_word] [reg_word]

0110
[regl],imm

[op_word] [reg_word]
[imm_word or imm_dword]

0111
[regl+off],regh

[op_word] [reg_word]
[off_DWORD]

1000
[regl+off],imm

[op_word] [reg_word]
[off_DWORD] [imm_word or imm_dword]

1001
[mem],regh

[op_word] [reg_word]
[addr_DWORD]

1010
[mem],imm

[op_word] [addr_DWORD] [imm_word or imm_dword]

1011
[regl+mem+off],regh
[op_word] [reg_word]
[addr_DWORD] [off_DWORD]

1100
[regl+mem+off],imm
[op_word] [reg_word]
[addr_DWORD] [off_DWORD] [imm_word or imm_dword]

1101
[regl+regh],reg2

[op_word] [reg_word]
[reg_word2]

1110
[regl+regh],imm

[op_word] [reg_word] [imm_word or imm_dword]

1111 LEA (see below)

Examples are:

XOR r80,[r6]

; reg,[reg]b

XOR byte from memory at addr in r6 into R80

OR r32,[r8+7]

; reg,[reg+off]w
OR word from memory (at addr 7 higher than in r8) into R32

AND r20,[TstBuf]
; reg,[mem]d

AND dword from TstBuf into R20

TST r80,[r6+TstBuf+5] ; reg,[reg+mem+off]
TST r80 with byte from [TstBuf+5+contents of R6]

CMP r80,[r6+r7]
; fetch byte from addr [sum of R6 and R7], compare it to contents of R80

SUB [r6]w,r32

; [reg]w,reg

sub contents of r32 from WORD at address in R6

ADD [r6]w,=17

; [reg]w,imm

add 17 to contents of WORD at address in R6

LDM [r6+TstBuf]d,r20
; [reg+off],reg move contents of R20 to DWORD at [TstBuf+contents of R6]

XOR [r6+TstBuf]d,=3
; [reg+off],imm XOR value of 3 into DWORD at [TstBuf+contents of R6]

OR [TstBuf]b,r80

; [mem],reg

OR byte in R80 into BYTE at [TstBuf]

AND [TstBuf]w,=1024
; [mem],imm

AND value of 1024 onto WORD at [TstBuf]

TST [r6+TstBuf+2]b,r82 ; [reg+mem+off],reg

CMP [r6-Bogus+2]d,=0xFFFF0000

SUB [r6+r8]w,r32

; [reg+reg],reg

LDM [r6+r8]b,=0xFF
; [reg+reg],imm

The LEA opcode has this bit value: 0101 011u uaaa 1111 where the two ‘u’ bits are unused (reserved) and are 0, and the three ‘aaa’ bits are the address mode:

000 LEA d,[reg]

001 LEA d,[reg+off]

010 LEA d,[mem]

011 LEA d,[reg+mem+off]

100 LEA d,[reg+reg]

101 unused

110 unused

111 unused

In all of the memory operations above, the target memory location can be specified either as a single expression with a single pair of []’s, or as individual expressions each within their own []’s. For example, the “worst-case scenario” of [reg+mem+off] can be written in any of these ways:

[reg+mem+off]

[reg][mem+off]

[reg+mem][off]

[reg][mem][off]

Primary memory block layout:

Example of stack manipulation using

the AFR and DFR opcodes, generated

by the @FRAME_ARGS/@FRAME_VARS

instructions.
SysOpen
Inputs:

R15 = address of filename

R95 = memblk (0=R0 1=R1 2=R2)

R94 =

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

4 if MUSIC folder

5 if SOUNDS folder

6 if ‘home’ (game) folder graphic file

R39 = open flags, consistent with ANSI C:

O_RDBIN
0x8000
read only, binary

O_WRBIN
0x8002
read/write, binary

O_WRBINNEW 0x8302
read/write, binary, create or truncate

Outputs:

R15 = file handle if successful, -1 if failed

SysEOF
Inputs:

R15 = file handle

Outputs:

R12 = 1 if at EOF, 0 if not at EOF, -1 if error

SysRead
Inputs:

R15 = file handle

R14 = buffer offset

R13 = max number of bytes to read

R95 = memblk (0=R0 1=R1 2=R2)

Outputs:

R12 = number of bytes read. (-1 if error)

SysWrite
Inputs:

R15 = file handle

R14 = buffer offset in memblk specified by R95

R13 = number of bytes to write

R95 = memblk (0=R0 1=R1 2=R2)

Outputs:

R12 = number of bytes written. (-1 if error)

SysSeek
Inputs:

R15 = file handle

R14 = offset to move the file pointer to

R95 = SEEK_SET (0), SEEK_CUR (1), or SEEK_END (2)

Outputs:

R12 = new offset in bytes (-1 if error)

SysDelete
Inputs:

R15 = address of filename

R95 = memblk (0=R0 1=R1 2=R2)

SysMakeFolder (KINT 2.0)

Inputs:

R15 = DIR_GAME sub-folder name

R95 = memblk for R15

Outputs:

R15 = 0 if fails, non-0 if succeeds

SysDelFolder (KINT 2.0)

Inputs:

R15 = DIR_GAME sub-folder name (must be empty folder!)

R95 = memblk for R15

SysClose
Inputs:

R15 = file handle to close

SysFindFirst
Inputs:

R15 = offset in memblock[R95] of filespec to search for

R95 = memblk (0=R0 1=R1 2=R2) for R15

R14 = offset in memblock[R94] of found filename buffer (min. of 260 bytes)

R94 = memblk (0=R0 1=R1 2=R2) for R14

R93 = folder (see SysOpen R94)

Outputs:

R15 = "findfirst/next" handle of first file found, or -1 if none found or error and found file name in buffer [R94]:R14

R95 = file attributes:

0x00 = _A_NORMAL

0x10 = _A_SUBDIR

SysFindNext
Inputs:

R15 = "find first/next" handle returned by previous FINDFIRST

R14 = offset in memblock[R94] of found-filename buffer (min. of 260 bytes)

R94 = memblk (0=R0 1=R1 2=R2) for R14

Outputs:

R15 = 0 if file found, or -1 if none found or error and found file name in buffer [R94]:R14

R95 = file attributes:

0x00 = _A_NORMAL

0x10 = _A_SUBDIR

SysFindClose
Inputs:

R15 = "find first/next" handle returned by previous FINDFIRST

SysMakeShareCopy
Inputs:

R95 = command (0=get size & 1st name, non-0=copy next file)

R15 = R0 buffer address for next filename

R13 = R0 address of destination path

Outputs:

R14 = -1 if error, or total size of files to be copied if cmd==0, else 0. When no more files to be copied, buffer R15 gets a NUL character instead of a filename.

SysFileSize
Inputs:

R15 = address of filename in memblk R95

R95 = memblk (0=R0 1=R1 2=R2)

R94 = folder (see SysOpen)

Outputs:

R13 = size of file (-1 if error)

R14 = time of last modification (secs from midnight Jan 1 1970)

SysGetEOL
Inputs:

R15 = address of buffer in memblk 0 for EOL

Outputs:

R15 has been incremented past added EOL sequence.

SysAllocMem
Inputs:

R15 = size of memory block to allocate

Outputs:

R15 = "handle" of memory block allocated (non-zero for valid memory allocation) this "handle" must be placed in R1 or R2 to access the memory (using LD1/LD2 type instructions). It is NULL if the allocation failed.

SysFreeMem
Inputs:

R15 = “handle” of memory block to free

SysTimeReg
Outputs:

R39 = year (ie, 2001)

R38 = month (0-11, Jan=0, Feb=1, Mar=2, etc)

R37 = day (1-31)

R36 = hour (0-23)

R35 = minute (0-59)

R34 = second (0-59)

SysTimeStr
Inputs:

R15 = offset in memblock[R95] of buffer for TIME string

R95 = 0 for R0, 1 for R1, 2 for R2

Outputs:

buffer [R95]:R15 filled with string representing current time

SysTimeMilli
Outputs:

R15 = "progressive" time count in milliseconds. By "progressive", I mean a count which doesn't necessarily bear any resemblance to "real" time, but rather is a counter that is a reasonably accurate "millisecond counter" that may eventually roll over to 0, but which should not do so more often than once a day, and who's count value continues upwards (until such time as a roll-over might occur). This is accomplished on the MS-Windows platform using the GetTickCount() function. Other platforms may choose to implement this in whatever way seems easiest, while meeting the above criteria. This counter value is used for many things, including animation and timing of games, so it should be fairly accurate (we don’t want the game claiming that it took 10 minutes to solve the puzzle when it only took 8…)

SysSetCursor
Inputs:

R39 = 0 (normal), 1 (wait/hourglass), 2 (help hotlink pointer)

SysSetPgmTitle
Inputs:

R15 = offset in memblock[R95] of buffer containing program title

R95 = 0 for R0, 1 for R1, 2 for R2

SysPlaySound
Inputs:

KINT 3.4 added R95=3,4,5

If R95 = 0,1,2 then:

R15 = offset in memblock[R95] of memory containing filename of sound to play NOTE: gets .WAV appended

R95 = 0 if R0, 1 if R1, 2 if R2

If R95 = 3,4,5 then:

R15 = offset in memblock[R95-3] of memory containing a .WAV file (in RAM) of sound to play.
R95 = 3 if R0, 4 if R1, 5 if R2

R96 = non-0 if DON’T stop previously playing sound

SysPlayMusic
Inputs:

R15 = offset to memblock[R95] memory containing filename of music to play

R95 = 0 if R0, 1 if R1, 2 if R2

NOTE: gets ..\MUSIC\ pre-pended and .MID appended

SysStopMusic
SysIsMusic

Outputs:

R39 = 0 if no music is playing, !=0 if music IS playing

SysStartTimer
Inputs:

R15 = millisecond timer interval

SysStopTimer

SysSystemMsg

Inputs:

R15 = offset in memblock 0 of message buffer

SysMemcmp
Inputs:

R15 = offset in memblk[R95] of buffer 1

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of buffer 2

R94 = 0 for R0, 1 for R1, 2 for R2

R13 = number of bytes to compare

Outputs:

R95 < 0 if R15[R95] < R14[R94]

R95 = 0 if R15[R95] = R14[R94]

R95 > 0 if R15[R95] > R14[R94]

SysMemcpy and SysMemmove
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

R13 = number of bytes to copy

SysMemset/SysMemset2/SysMemset4
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = value to write (SysMemset)

R14 = value to write (SysMemset2/SysMemset4)

R13 = number of bytes/words/dwords to set

SysStrcpy and SysStrcat
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

SysStrcmp and SysStricmp
Inputs:

R15 = offset in memblk[R95] of dest buffer

R95 = 0 for R0, 1 for R1, 2 for R2

R14 = offset in memblk[R94] of source buffer

R94 = 0 for R0, 1 for R1, 2 for R2

Outputs:

R95 < 0 if R15[R95] < R14[R94]

R95 = 0 if R15[R95] = R14[R94]

R95 > 0 if R15[R95] > R14[R94]

SysStrlen
Inputs:

R15 = offset in memblk[R95] of source buffer

R95 = 0 for R0, 1 for R1, 2 for R2

Outputs:

R39 = length of string in source buffer

SysStr----00 and SysMem----00
For each of the above Str/Mem functions, there is a corresponding Sys-function ending in 00 (zero-zero) which does not use R94 and/or R95 for memblk specification, but which are hard-wired to use memblk R0 for both source and destination.

SysPrintRect
Inputs:

R19 = X

R18 = Y

R17 = Width

R16 = Height

R14 = fill color

R13 = edge color

SysPrintStart
Outputs:

R15 = non-0 if successful

R14 = printable page width (pixels)

R13 = printable page height (pixels)

R12 = X-printer resolution (pixels per inch)

R11 = Y-printer resolution (pixels per inch)

SysPrintBegPage
Outputs:

R95 = non-0 if successful

SysPrintEndPage
Outputs:

R95 = non-0 if successful

SysPrintText
Inputs:

R14 = string address in memblk R95

R13 = color of text

R95 = memblk of R14 string

R12 = x-coordinate for text output

R11 = y-coordinate for text output

SysPrintBM
Inputs:

R14 = source bitmap handle

R19 = X destination

R18 = Y destination

R17 = X source

R16 = Y source

R13 = Width source

R12 = Height source

R11 = Width destination

R10 = Height destination

SysPrintLines
Inputs:

R14 = address of DWORD points in memblk R95

R13 = color of lines

R95 = memblk of R14 DWORD points array

R39 = # of points in DWORD points array

SysPrintGetTextSize
Inputs:

R14 = string address in memblk R95

R95 = memblk of R14 string

R37 = font handle UNUSED ON KINT 2.0+
Outputs:

R15 = width of text as it would be printed

R14 = height of text as it would be printed

R13 = height of non-descending text

SysPrintFont (KINT 2.0)

Inputs:

R38 =point size (8,10,12, etc) of font

R37 = bits:

0 = 0 variable pitch, 1 fixed pitch

1 = 0 normal, 1 bold

2 = 0 normal, 1 italic

Outputs:

R38 = height of font

R37 = ascending height of font

SysPrintStop
 SysCreBM
Inputs:

R39 = width

R38 = height

Outputs:

R15 = handle of created bitmap (NULL if failed)

SysDelBM
Inputs:

R15 = handle of bitmap to be deleted

SysLoadBM
Inputs:

R15 = offset into memblock[R95] of filename

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = file location

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

Outputs:

R15 = bitmap handle (NULL if failed)

SysLoadMBM (load Masked BitMap)

Inputs:

R15 = offset into memblock[R95] of filename

R39 = Xcoord of 1st transparent pixel

R38 = Ycoord of 1st transparent pixel

R37 = Xcoord of 2nd transparent pixel (KINT 2.0)

R36 = Ycoord of 2nd transparent pixel (KINT 2.0)

R95 = 0 for R0, 1 for R1, 2 for R2

R94 = file location

0 if ‘home’ (game) folder

1 if UI folder

2 if IMAGES folder

3 if BACKGNDS folder

Outputs:

R15 = bitmap handle (NULL if failed)

SysDrawBM and SysInvDrawBM
Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

SysDrawMBM and SysInvDrawMBM (draw masked)

Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

SysSaveBM
Inputs:

R15 = handle of bitmap

R14 = address in memblk[R95] of filename

R95 = memblk for filename

R94 = file location (see SysLoadBM R94)

SysSizeBM
Inputs:

R15 = handle of bitmap

Outputs:

R39 = width of bitmap

R38 = height of bitmap

R37 = bitmap orientation (KINT 2.0)

SysStretchBM
Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source (see note below)

R34 = height of source

R33 = width of destination

R32 = height of destination

NOTE: if R35 is negative, it’s the negative WIDTH, and a SMOOTH (smart) stretch or compression is performed. If R35 is positive, it’s the positive WIDTH, and pixels are simply duplication or deleted as needed (not-so-smart).

SysStretchMBM (KINT 2.0)

Inputs:

R15 = handle of destination bitmap

R14 = handle of source bitmap

R39 = x-coord of destination

R38 = y-coord of destination

R37 = x-coord of source

R36 = y-coord of source

R35 = width of source

R34 = height of source

R33 = width of destination

R32 = height of destination

NOTE for KINT >= 3.2 : if R35 is negative, it’s the negative WIDTH and a SMOOTH (smart) MASKED stretch or compression is performed. If R35 is positive, it’s the positive WIDTH, and pixels are simply duplication or deleted as needed.

SysMaskBM (KINT 2.0)

Inputs:

R15 = handle of bitmap

R14 = transparency color 1

R13 = transparency color 2

SysOrientBM (KINT 2.0)

Inputs:

R15 = bitmap handle

R39 = orientation. One of:
BMO_NORMAL, BMO_90, BMO_180, BMO_270, BMO_FNORMAL, BMO_F90, BMO_F180, BMO_F270. The BMO_Fxxx orientations do the rotation FIRST, then flip left-to-right.

SysOrientBm resets clipping to logical limits.

SysRGB2HSL (KINT 2.0)

Inputs:

R80-R82 = R,G,B (respectively)

Outputs:

R84-R86 = Hue, Sat, Lightness (respectively) R87 = 0

SysHSL2RGB (KINT 2.0)

Inputs:

R84-R86 = Hue, Sat, Lightness (respectively)

Outputs:

R80-R82 = R,G,B (respectively)

R83 = 0

SysColorize (KINT 2.0)

Inputs:

R15 = handle of bitmap

R39 = X of rectangle

R38 = Y of rectangle

R37 = width

R36 = height

R35 = hue <0==nochange, else 0-255

R34 = saturation <0==no change, 0=gray (and hue is ignored), else 1-255

R33 = brightness -255 to 255 (“percentage” change)

R32 = contrast -255 to 255 (“percentage” change)

SysAlphaBlend (KINT 2.0)

Inputs:

R95 = Dst ratio 0-255 (0=src, 64= ¼ dst & ¾ src, 128= ½ & ½ , 192 = ¾ & ¼, 255=dst, etc.

Outputs:

R95 = previous Alpha Blend value

SysClip (KINT 2.0)

Only those pixels are drawn that are within the clip area.

Inputs:

R15 = handle of bitmap

R39 = left clip limit (-1 == NO clipping)

R38 = top clip limit

R37 = width of clip limit

R36 = height of clip limit

SysGetClip (KINT 2.0)

Inputs:

R15 = handle of bitmap

Outputs:

R39 = left clip limit

R38 = top clip limit

R37 = width of clip limit

R36 = height of clip limit

SysGetWindowPos
Values returned by this function should not be USED by Kode, only saved to a “configuration” file, and then restored using the SysSetWindowPos function.

The X/Y/W/H values are true on MS Windows but may be different on other OS’s.

Outputs:

R15 = system window X

R14 = system window Y

R13 = system window width

R12 = system window height

R11 = system dependant miscellaneous value

SysSetWindowPos
Inputs:

R15 = system window X

R14 = system window Y

R13 = system window width

R12 = system window height

R11 = system dependant miscellaneous value

R10 (KINT 2.2) =

0 Normal (use R11-R15)

1 Minimize (ignore R11-R15)

2 Restore (ignore R11-R15)

3 Maximize (ignore R11-R15)

SysGetViewSize
This is the size of the “client” portion of the program window, the portion which can be drawn upon by the Kode.

Outputs:

R39 = window width

R38 = window height

SysGetScreenSize
Outputs:

R39 = screen width

R38 = screen height

R37 = size index (0=640, 1=800, 2=1024, 3=1152, 4=1280, 5=1600)

SysFlushScreen

Force the system to dump the graphics buffer.

SysLineStyle (KINT 2.2)

Inputs:

R12 = bits for line style pattern

Outputs:

R12 = previous line style value

SysLines
Inputs:

R15 = dst bitmap handle (NULL==screen)

R14 = offset in memblock[R95] of (x,y) WORD coordinate array

R95 = 0 for R0, 1 for R1, 2 for R2

R13 = RGB color of lines

R39 = # of points in the [R14] array

SysRect and SysOval (KINT 2.0)

Inputs:

R15 = dst bitmap handle (NULL==screen)

R14 = RGB color for FILL (-1 if none)

R13 = RGB color for EDGE (-1 if none)

R39 = left edge coordinate

R38 = top edge coordinate

R37 = width

R36 = height

For SysRect, on Kint 2.2, if R13 or R14 = -2, then do a lightness/saturation gradient fill, where:

R90 = hue

R91 = min sat

R92 = max sat

R93 = min light

R94 = max light

SysRectEdged
Inputs:

R15 = dst bitmap handle (NULL for screen)

R14 = RGB color for rectangle FILL

R13 = RGB color for rectangle EDGE

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysRectSolid
Inputs:

R15 = dst bitmap handle (NULL for screen)

R14 = RGB color for rectangle FILL

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysRectOutline
Inputs:

R15 = dst bitmap handle (NULL for screen)

R13 = RGB color for rectangle EDGE

R39 = left edge coordinate

R38 = top edge coordinate

R37 = right edge coordinate

R36 = bottom edge coordinate

SysSetPixel
Inputs:

R15 = dst bitmap handle (NULL==screen)

R14 = RGB color of point

R39 = x-coordinate of point

R38 = y-coordinate of point

SysGetPixel
Inputs:

R15 = dst bitmap handle (NULL==screen)

R39 = x-coordinate of point

R38 = y-coordinate of point

Outputs:

R14 = RGB color of point

SysBegText
SysEndText
A SysBegText must be done before any other “font/text” functions are called (except for SysGetFont and SysRelFont).

A SysEndText must be done after all “font/text” functions are finished with.

These (always matched) pairs can be nested up to 25 deep. Their purpose is to allow the SYSFUNCS.CPP module of KINT to save/restore necessary things.

SysGetTextSize
assumes a SysBegText and a SysTextStyle have already been done

Inputs:

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

Outputs:

R39 = width

R38 = height

R37 = ascending height (height of text minus descender part)

SysGetFont
Inputs:

R13 = charW bufptr in memblk[R94] (KINT 2.0)

Set to NULL if not needed, else must point to a 512-byte buffer.

R94 = memblk for charW buffer ptr (KINT 2.0)

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

R39 = pixel width of rectangle to fit text into

R38 = pixel height of rectangle to fit text into

(KINT 3.0 – if R38==0, R39==font handle to

get charW info for)

R37 = bits:

0 = 0 variable pitch, 1 fixed pitch

1 = 0 normal, 1 bold

2 = 0 normal, 1 italic

Outputs:

CharW buffer filled with char widths (1st byte of each entry is base-width, 2nd is cell-width)

R39 = handle of font

R38 = height of font

R37 = ascending height

SysRelFont
Inputs:

R39 = handle of font to release

SysTextStyle
Inputs:

R14 = backcolor (-1 if transparent, otherwise opaque)

R13 = textcolor

R39 = font handle

SysText

Inputs:

R15 = PDIBS handle (NULL==screen)

R14 = string buffer address in memblk[R95]

R95 = memblk for string buffer

R39 = x-coordinate of point

R38 = y-coordinate of point

SysLoadKE (KINT 2.0)

After the .KE program is loaded, R11 is set to the caller’s program handle, R12 is set to the loaded .KE program’s handle, and a KHDR_BEGIN_STARTUP message is sent to the freshly loaded program, then control returns to the caller’s program immediately after the SysLoadKE opcode. NO other messages are sent to the loaded .KE program by the interpreter except for the KHDR_SHUT_DOWN message that is automatically sent when SysUnloadKE is executed, so the MAIN .KE program is responsible for passing along any messages that it deems necessary for a sub-.KE program to know about.

Inputs:

R15 = offset in memblk[R95] of .KE name, without the .KE file extension, but may include a sub-folder path, for example on MS Windows, “playersub/somesub”,0 would specify the file “somesub.ke” in the “playersub” sub-folder of the game folder. Note that the sub-folder separation character is a forward slash (ala unix), not a backslash.

R95 = memblock for offset in R15

(KINT sets R11 to caller’s program handle)

Outputs:

R12 = program handle (NOT necessarily a memory pointer!)

SysUnloadKE (KINT 2.0)

R11 is set to the caller’s program handle, and a KHDR_SHUT_DOWN message is sent to the sub-.KE program about to be unloaded, then the sub-.KE program is unloaded (freeing the memory).

Inputs:

R12 = program handle (from SysLoadKE)

(KINT sets R11 to caller’s program handle)

SysMsgKE (KINT 2.0)

R11 is set to the caller’s program handle, then control jumps to the target program via the @vector table offset in R32. When the target program executes a HALT instruction, control returns to the calling program immediately after the SysMsgKE opcode.

Inputs:

R12 = program handle (from SysLoadKE)

R32 = message (@vector table offset, 0, 4, 8, etc, up to 124. See KHDR_xxx defines in pmach.h.)

R15 = arg 1

R14 = arg 2

R13 = arg 3

(KINT sets R11 to caller’s program handle)

Outputs:

ALL registers remain exactly as the sub-.KE program left them, except for R0, and R3-R8, which are restored by KINT to the caller’s values. The state of SM (signed math) KCPU flag is preserved around the SysMsgKE call.

“KASMB” header (6 bytes, null-terminated)

MAJOR revision number of minimum required interpreter (1 byte)

MINOR revision number of minimum required interpreter (1 byte)

SIZE of initialized data (4 bytes)

SIZE of uninitialized data (4 bytes)

SIZE of stack (4 bytes)

UNUSED event vector entries (10*4 bytes)

EVENT vector table (4 bytes per entry):

	OnScreenChange

	OnAlphaKeyDown

	OnAlphaKeyUp

	OnBeginStartup

	OnEndStartup

	OnWindowHidden

	OnWindowMove

	OnWindowSize

	OnPointerMove

	OnKeyDown

	OnKeyUp

	OnChar

	OnTimer

	OnIdle

	OnMusicDone

	OnQueryQuit

	OnShutdown

INITIALIZED DATA and CODE

UNINITIALIZED DATA

STACK

R0 (code base)

R3 (execution pointer)

R4 (stack frame base pointer)

R5 (top of stack pointer)

unused stack memory

 prior stack entries

DWORD arg1

WORD arg2

DWORD JSR return address

DWORD old R4 value

WORD variable1

DWORD variable2

WORD variable3

-14

-10

-8

-4

0 R4 (BP)

2

6

8 R5 (SP)

unused stack space

The diagram to the left shows a sample stack after this has been executed:

	pu0	R10,+R5	; push arg1

	pu0	R36,+R5	; push arg2

	jsr	sub1		; call function

….

sub1:

@frame_args

	arg1:	DWORD

	arg2:	WORD

@frame_vars

	variable1:	WORD

	variable2:	DWORD

	variable3:	WORD

@frame_end

…..

The @frame_args block causes an AFR opcode to be pushed, followed by a WORD which is the size of variable memory to allocate on the stack (from 0 to 64K-2). The AFR opcode effectively does this:

	pu0	R4,+R5

	ldr	R4,R5

	add	R5,=xxxx

where xxxx is the word following the AFR.

When sub1 is done with the stack, it must have this line:

@frame_del

which causes a DFR opcode to be generated,

which (when executed) effectively does this:

	ldr	R5,R4

	po0	R4,-R5

throwing away the stack variables and preparing for the RET instruction. The calling routine must (right after the JSR) do either:

	po0	R36,-R5

	po0	R10,-R5

OR do:

	sub	R5,=6

in order to clean up the args from the stack.

